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Abstract

According to the expectations theory of the term structure the yield on
a multi-period bond is equal to the expectation of the average of future one-
period spot rates, with the possible exception of a constant term premium.
In this paper holding period return premia for Swedish Treasury bills and
bonds are related to the volatility in the markets for these securities. The
derived yield premia and forward premia are close to zero during most
of the period examined. However, the premia are substantial in a few
periods of high volatility. Thus, there have been periods when the yield
has increased because of higher risk in the market rather than because
of a change in expectations about future one-period interest rates. The
evidence of time-varying risk premia contradicts a strict interpretation of
the expectations theory of the term structure.
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1. Introduction

According to the expectations theory of the term structure the yield on a mulfi-
period bond is equal to the expectation of the average of future one-period spot
rates. However, the return on a bond is risky unless you hold it until maturity
and investors would therefore demand a risk premium. A constant risk premium
could easily be allowed for in the expectations theory, but not a time-varying
premium. One reason that there could be a time-varying risk premium is if risk
varies over time.

In two recent papers, Engle, Ng, and Rotschild (1990) (hereafter ENR) and
Engle and Ng (1993) examine the possibility of risk-related return premia in
the term structure. They relate the excess holding period returns on individual
T-bills to the conditional variance of an equally weighted bill portfolio. Thus,
volatility in the T-bill market represents risk in the model. This specification
leads to return premia that vary with the volatility of the T-bill market. The
model seems to fit the U.S. monthly data well for the time period 1964-89. The
premia are quite large in periods of high volatility.

We specify and test a version of the ENR model on Swedish data. An impor-
tant extension of the analysis is to include T-bonds as well as T-bills. This also
leads us to consider a multifactor model. The estimated model is a two-factor
model with a bill factor and a bond factor. We derive risk premia that vary
with the volatility in the T-bill market and the T-bond market. The finding of
time-varying return premia contradicts the expectations theory. Yield premia
and forward premia are also derived. These have been quite substantial in a few
periods of high volatility during the period 1987-1994.

Looking at previous empirical studies of the Swedish term structure, the one
that is closest in spirit to the present paper is Hordahl (1995). He uses the
multivariate GARCH-M model of Bollerslev, Engle, and Wooldridge (1988) in
which the premium on Swedish benchmark bonds is related to the conditional
covariance of a market portfolio consisting of stocks and bonds. He finds premia
of substantial magnitudes during periods of great uncertainty and concludes that
the expectations theory is rejected. Other studies of the Swedish term structure
have yielded mixed results. Horngren (1986), Warne (1990), and Blix (1996)
reject the expectations theory, while Dahlquist and Jonsson (1994) and Hordahl
(1994) are not able to reject the theory. Dillén (1996) presents a regime shift
model, in which investors’ fears that the economy will switch to a high-inflation
regime give rise to a regime shift premium for holding bonds. In addition to this,
he also finds evidence of a volatility-driven time-varying term premium.

The plan of the paper is the following. In the next Section the ENR model is
presented. In Section 3 we take a look at the Swedish data. ARCH models for the




T-bill and T-bond portfolios are estimated in Section 4, while one-month holding
premia for the individual bills and bonds are estimated in Section 5. In Section 6

yield premia and forward premia are computed from the holding premia. Section
7 concludes.

2. The ENR Model

2.1. The Theoretical Model

Engle, Ng, and Rotchild (1990) postulate the following K-factor linear model for
the one-period excess holding returns? of NV assets,

K
yi=p:+ z Bkefrr + Vi, (2.1)
k=1
where p; is the N x 1 vector of conditional means of the excess returns, fi is the
k:th factor with the N x 1 vector of factor loadings g;:, and v; is a N X 1 vector
of residuals. It is further assumed that the following moment conditions hold,

Ei1[fie] = 0,Vk,t,

E; [fk:fjt] = O:Vj # krta
Ei 1 [vi| fre Jats ooy Fci] = 0, V1,
Eiq[Vi] =0, V8,

By [v,v;"] = Q, Vi,

where 2 is a N x N positive semi-definite mairix. The K factors fi, fa,..., fx
represent sources of common risk for the assets, while v; represent idiosyncratic
risk. The factor loading gix gives the sensitivity of the #th asset to a changein
the k:th factor.

Let Bx, k = 1,.., K, be linearly independent N x 1 vectors and Ay be positive
random variables for all k,t. We can construct a factor model with time-varying
factor loadings by assuming that gi = B)? and Eiy [f2] = 1 for all k,t.
Alternatively, by assuming that gi: = Br and Ei; [f&] = M for all k, ¢, we get
a factor model with constant factor loadings and factors that have time-varying
conditional second moments. Either set of assumtions will lead to the following
conditional covariance matrix of asset excess returns,

K
Ho=FE. [(Yt — p) (ye — P«t)T] = kEﬁkﬁZ/\ka + §2. (2.2)
=1

1The one-period excess holding return is the return from holding a multi-period asset for
one period compared to holding a one-period asset for that same period.



A problem with the specification above is that the factors are unobservable.
We deal with this problem by considering asset portfolios that represent the
factors. Let ay be a portfolio of N assets, which is only subject to k-factor risk,
ie. of B; =0V # k and ef B = 1. The conditional variance of the excess
return on such a factor representing portfolio will be

O = az Hiop = A + a;'; Qay . (2.3)
Using Eq. 2.3 to substitute out Ay in Eq. 2.2, we get

K
Hy =Y BBy O + O, (2.4)
k=1

where ©* = Q— K . 88T o] Qa; . Thus, the latent variables Ar: are replaced
by the conditional variances 8;; of the factor representing portfolios.
Let us next see how the conditional means of the excess returns, or return

premia, are determined. It is assumed that there exists a pricing kernel, which is
given by?

K
me=v-+ Y befu +wr, (2.5)

k=1
with moment conditions Ej_; [wy] = 0, Eieq [wilfity .., fxr] = 0, By [wevi] = 0,

and E;._, [(wt)z] = o2 for all . Under the above assumptions the return premia
will be given by

K
e = 6Covi1(yi, 1) = Zﬂkﬁbk)\kt, (2.6)

k=1
where § is a preference parameter, assumed to be constant. Premultiplying by
o, gives us the return premium of the k:th factor representing portfolio as

Hkt = CYI Bt = é‘bk)\];g. (2.7)

Using Eq. 2.7 the asset return premia in Eq. 2.6 can be rewritten as linear
functions of the return premia of the factor representing portfolios,

K K
po=3 Ballie = 3 Bi (i + 710kt) - (2.8)

k=1 k=1
where ¢, = —8bra] 2y and 7, = 6by, are constants. The last equality is obtained

by substituting Eq. 2.3 into Eq. 2.7. Hence, the asset return premia are functions
of the conditional variances of the factor representing portfolios.

2Typically in a CCAPM framework we would think of the pricing kernel as being the rate

of change of marginal utility of consumption for a representative agent with time-separable
vonNeuman-Morgenstern utility.




In Egs. 2.8 and 2.4 the means and conditional variances of the asset excess
returns are conveniently expressed as linear functions of the conditional variances
of the K factor-representing portfolios. In the next subsection this model will be
put into testable form.

2.2. The Econometric Specification

In what ENR call a general portfolio representation the excess return on any
factor-representing portfolio depends on the history of the past excess returns of
all K factor-representing portfolios. Consistent estimates of the conditional co-
variances, 0x;’s, can be obtained by estimating a system of K factor-representing
portfolios. Hence, for each k=1,...,K, and all ¢, we have

Py = e + upe = ¢k + 70kt + v
akt =wp + Ep Ej (qskju:lzc.t«-p + ‘Pk.'igk't—l?) ]

where P, is the excess return on portfolio k, uy is normally distributed with
mean zero and conditional variance 0, a GARCH-M specification is assumed
to start with, and the summation is over all K portfolios. The estimation is
further simplified if the system has a recursive portfolio representation, such that
the excess return on the kth portfolio depends only on its own history and the
history of the first k1 portfolios (the second summation in Eq. 2.9 goes from
j=1 to &-1). In the most restrictive case the K factor-representing portfolios will
have a univariate portfolio representation, meaning that the excess return on a
portfolio depends only on its own history (the summation in Eq. 2.9 collapses to
7=k).

The procedure to be followed is this. First, a univariate portfolio represen-
tation will be estimated. After testing whether it should be expanded info a
recursive or general representation, the preferred portfolio models are estimated.
After that it will be possible to estimate return premia for the individual assets.
The model to be used for this purpose is derived from Eqgs. 2.8 and 2.4. For all
assets 7 and all time periods £, we have

(2.9)

Yie = ¥i + 1ok Bl + €ie
hie = o + Tk Bl
where €;; is normally distributed with mean zero and conditional variance h;.
The constant ; has been included in the mean equation to capture a possibly
constant term premium. The constant ¢ is the #th diagonal element in the
Q* matrix in Eq. 2.4. In estimating the model in Eq. 2.10 the ;s and 6:’s
are predetermined variables from the factor-representing portfolio model Eq. 2.9
above. The model in Eq. 2.10 will be referred to as the Factor ARCH model.

(2.10)




3. The Data

The sample period is June 1987 to December 1994. This is a sample of 90
observations (since one observation will be lost computing the monthly holding
returns). Data for the nine-year bond are only available starting in June 1987.
Dropping the nine-year bond from the sample would not help much, since before
May 1987 data are only available for a limited number of maturities. The interest
rate series include T-bills (Statsskuldvéxlar) with maturities of 1 to 12 months
and T-bonds (Statsobligationer) with maturities of 2 to 9 years. A value-weighted
stock index (Affirsvirldens Generalindex) is also considered. All series were
obtained from the Swedish Central Bank’s (Sveriges Riksbank) database.

For most of the period T-bills have been issued only in the middle of the
month. In an effort to make the stated maturities correspond as closely as possible
to the actual maturities data have been collected on the 15th of the month or on
the nearest trading day after that date. This procedure has been followed for all
the series to get a synchronous set of data. One exception is the starting date,
which is June 22, 1987 for all series because that is the first date for which a
quotation is available for the nine-year bond. In February 1990 there was a short
labor market conflict in the banking sector and the data for that month are from
the first trading day after the strike, which was February 19.

Figure 1 depicts the continuously compounded interest rates on 1 and 12
month T-bills along with the 5-year T-bond, while Figure 2 shows the monthly
excess holding returns on the securities with the longer maturities (expressed
in annual percentage terms).® The extremely high short-term interest rates in
September 1992 reflect the attempt to defend the fixed exchangerate. The krona
was eventually allowed to float on November 19 of the same year.

A visual inspection of the return series in Figure 2 indicates that return models
with time-varying conditional variances could possibly yield a good characteriza-
tion of these time series. The excess holding period returns are highly positively
correlated across maturities. This makes it seem plausible that they could be
driven by a set of common factors. In the next section we will treat these ques-
tions more rigorously.

4. Estimating Factor-Representing Portfolio Models

1t is not clear how one should go about choosing the factor-representing portfolios.
Using an equally-weighted bill portfolio will enable comparisons with Engle, Ng,
and Rotschild (1990) and Engle and Ng {1993). On the other hand, a bond
portfolio could capture some aspects of risk that are more important at the longer

®Holding-period returns are computed as in Shiller (1990), which also adjusts for coupons.

Excess holding returns are then obtained by simply subtracting the return on the one month
bill.




Table 4.1: Testing for ARCH in Portfolio Returns

Number Bill Bond Stock

of lags | portfolio | portfolio | index
1 0.011 0.647 0.661
2 0.034 0.734 0.885
3 0.068 0.053 0.752
4 0.117 0.107 0.874
5 0.200 0.119 0.921
6 0.299 0.062 0.198

NOTES.- Probability values for the null hypothesis of no ARCH.

end of the maturity spectrum. The stock market could possibly provide us with
additional information on the covariance structure of asset prices. Hence, we
will be looking at a bill factor, a bond factor, and a stock market factor. More
specifically, the following factor-representing portiolios will be considered: (1) a
portfolio with equal weights on each of the bills and zero weights on all other
assets, (2) a portfolio with equal weights on the bonds and zero weights on all
other assets, and (3) a portfolio with a weight of one on the stock index and zero
weights on all other assets.

The excess holding period returns on the portfolios are subjected to the LM-
test for ARCH errors proposed by Engle (1982). The probability values from the
test of no ARCH effects are presented in Table 4.1. The assumption of no ARCH
effects in the T-bill returns is rejected at one and two lags at the 5 percent level
of significance. ARCH in the bond returns is marginally significant (at the 5
percent level) at three lags. There is no evidence of ARCH effects in the stock
market index. Hence, only the T-bill and T-bond portfolios will be used in what
follows.

Based on the results in Table 5.1 2 GARCH(1,1)-M and = GARCH(3,1)-M
were estimated for the bill and bond portfolios respectively. Because of the lep-
tokurtosis in the standardized residuals, e = u,0; 1 2. the robust Wald test in
Bollerslev and Wooldridge (1992) was used to prune the models. After shed-
ding superfluous variables the preferred factor-representing portfolio models are
estimated as (subscript & = bill portfolio and B = bond portfolio):

Pbt = 0.002 + 0.35 9{,1 + bt
(1.016)  (4.07)

[0.39)] [0.22]

B = 0.0003 + 3.30 wul,_,
(2.99)  (4.19)
[0.46]  [0.23]

(4.1)




Pg, = —0.09 + 2.252 0O0p, 4 up
(L) (1.01)
[0.46] [0.67]
fp:= 003 + 028 i, .
(4.79) (1.29) '
116]  [0.86]

where ordinary t-statistics are shown in parentheses under the estimated coeffi-
cients and t-statistics that are robust to departures from normality are shown in
square brackets. The robust t-statistics for the bill portfolio are much smaller
than the ordinary t-statistics. The reason for the imprecise estimates is the high
kurtosis in the standardized residuals (the excess kurtosis measure, which is zero
for the normal distribution, takes the value 4.70). The ARCH(3)-M model for
the bond portiolio does not have the same problem. The normalized kurtosis is
a more managable 1.8, even though it is still highly significant. In both mod-
els the standardized residuals are negatively skewed (-.88 and -.96 respectively).
The assumption of normality is clearly violated and it is important to use robust
statistics in evaluating the Quasi Maximum Likelihood estimates (see Bollerslev
and Wooldridge (1992)). The joint significance of the two coefficients of interest
in Eq. 4.2 (not the constant terms) was tested using a robust Wald test. They
were found to be jointly significant at any reasobable level of significance.

Because of the exceptionally high kurtosis in the standardized residuals from
the bill portfolio model we consider an alternative model, an EGARCH-M model,
which may fit the bill returns better.? This model is estimated as

(4.2)

Py =—0.003 + 1.62 Oy + up
(1.18)  (2.54)
[0.48]  [1.25]
In Bbt = -7.19 — 0.10 In ab’t_]_
(9.48)  (0.90)

a.46]  [041] (4.3)
ey |V |“ " 2e8) Visees |
[2.96] [1.40]

The t-value for the GARCH-coeflicient is very low, but reestimating the model
without it does not change any of the other coefficients. From the coefficient
within the brackets (-0.37), we can tell that a negative innovation has a greater
effect on the conditional variance than a positive innovation. There is no straight-
forward way of comparing the models in Eqs. 4.3 and 4.1 since they are not

“The EGARCH specification was suggested in Nelson (1991).




nested. However the t-values in Eq. 4.3 are generally higher and the excess
kurtosis has been reduced from 4.70 to 1.89. An additional benefit is that the
skewness has fallen to -.2, which is insignificant. A test of any remaining ARCH
effects in the standardized residuals of the models in Eqs. 4.2 and 4.3 was con-
ducted and no such effects were found. Thus, the models seem to adequately
describe the autoregressive conditional heteroskedasticity in the return series.
Tests were also conducted to ascertain whether there was any influence from the
volatility in one market on the volatility in the other market. No such causal-
ity in variance was detected. Hence, we stick to the simple univariate portfolio
representation of Egs. 4.2 and 4.3.

5. Estimating Individual Asset Return Premia

We estimate the return premia of the 11 bills and 8 bonds using the Factor ARCH
model with two factors,

Yit = ¥i + Builly + Bpillpe +£a (5.1)
hit = i + B0 + B3:98: -

Quasi Maximum Likelihood is employed in estimating the models in Eq. 5.1 for
the 19 different maturities: bills of 2 to 12 months and bonds of 2 to 9 years. The
results of these estimations are presented in Table 5.1. To save space the constant
terms are not reported. The ; were small and insignificant for all maturities.
Ordinary t-statistics are reported in parentheses after the estimated coeflicients
and robust t-statistics are reported in square brackets.

Even if the precision in the estimates of the bill betas are low, there is a clear
pattern for the shorter maturities. The bill betas for 2 month bills to 10 month
bills are monotonically increasing. A similar pattern is even more evident for the
bond betas. With the exception of the 11 and 12 month bills, the bond betas are
increasing for maturities of 3 months up to 7 years. Bond betas for maturities
of more than 9 months are measured with satisfactory precision, with robust
t-values ranging from 1.83 to 4.04.5 We will relate these findings to previous
studies on U.S. data at the end of this section.

We would like to check the assumption that the standardized residuals eg, =
uktﬂ,";f/ ? are standard normally distributed by testing for skewness and kurtosis.
Under the null hypothesis of normality, the measures of skewness (GT)“I/ T e},
and excess kurtosis (247)"25°T _ (ef, — 3) are both asymptotically standard
normally distributed. In addition, the sum of the squares of these measures
is asymptotically distributed as Chi-square with two degrees of freedom, which

SAll 19 models were also estimated using the model in Eq. 4.1 in lieu of Eq. 4.3. The main
difference was a deterioration in the precision of the QML estimates and lower bond betas for
the bills. However, the other results were mainly unaltered.
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Table 5.1: Restricted 2-Factor ARCH Model for T-bills and T-bonds

B t rt | Bs: t rt sk | ku | DH LR1 {LR2
5 | 0.24 | (5.40) | [0.17]| 0.08 | (18.08) | [0.58] | -1.15 | 8.67 | 58.81% | 5.46 | 23.11%
3m|0.41|(7.20) | [0.44] | 0.06 | (1.32) | [0.12] | -0.91 | 7.40 | 57.46* | 5.82 | 2.83
4m|05¢|(7.57) | [0.51] | 0.12 | (1.35) | [0.12] | -0.78 | 6.45 | 52.35% | 2.74 | 7.15%
5m|0.70 | (7.65) | [0.69] | 0.12 | (2.18) | [0.45] | -0.73 | 5.32 | 40.66% | 1.07 | 6.16%*
6m | 0.81 | (7.34) | [0.74] | 0.17 | (2.47) | [0.66] | -0.72 | 4.47 | 31.37% | 2.26 | 7.94*
7m|0.92 | (7.01) | [0.78] | 0.18 | (2.69) | [0.82] | -0.73 | 3.68 | 22.85% | 1.87 | 8.51*
g m | 1.05 | (7.19) | [0.78] | 0.21 | (2.92) | [1.00] | -0.64 | 3.35 | 21.77% | 2.3¢ | 10.31*
9m |1.31 | (6.99) | [1.65] | 0.34 | (3.98) | [1.83] | -0.44 | 1.61 | 8.79%* | 7.18%* | 13.52*
10m | 1.49 | (6.86) | [1.64] | 0.43 | (4.62) | [2.16] | 0.49 | 2.28 | 13.87% | 1.87 | 36.47*
11m | 1.06 | (5.45) | [1.07] | 0.30 | (3.56) | [1.91] | -0.38 | 1.45 | 7.94** | 2.51 | 12.30*
19m | 1.01 | (4.88) | [L.16] | 0.3¢ | (3.70) | [2.14] | -0.27 | 1.33 | 7.45** | 2.16 | 13.38*
2y |0.90 | (2.93) | [1.18] | 0.56 | (4.08) | [3.34] [-0.32 | 0.49 | 2.41 |1.09 |11.87*
3y |0.88 | (2.00) | [0.66] | 0.79 | (3.76) | [3.60] | -0.53 | 0.95 | 4.99 |0.92 |4.68*
4y |1.33](278) | [0.76] | 0.97 | (3.52) | [3.30] | -0.68 | 1.40 | 7.30%* [ 1.39 | 7.04*
5y |1.05|(1.64) | [0.36] | 1.18 | (3.31) | [3.28] | -0.77 | 1.48 | 8.16%* | 0.96 | 2.83
6y|0.46]|(0.48) | [0.08] | 1.18 (3.40) [4.04] -0.9311.76 110.78*% § 0.91 0.51
7y 0.60 | (1.15) | [0.85] | 1.26 | (2.88) | [3.17] | -0.76 | 1.25 | 7.73** | 0.09 | 1.80
8y |0.21 | (0.36) | [0.59] | 1.19| (2.79) | [3.43] | -0.99 | 1.79 | 12.34% | 0.03 | 0.12
9y |0.38|(0.84) | [1.67) | 0.99 | (2.42) | [3.95] | -0.94 | 2.32 | 11.53* | 0.67 |0.60

NOTES.- Ordinary t-values are reported in parentheses to the right of the coefficient estimates.

Robust t-values are reported in square brackets. sk is the measure of skewness (normal=0),

ku is a normalized measure of kurtosis (normal=0), and DH is the Doornik-Hansen measure of
normality described in the text. LR1 is a likelthood ratio test comparing the restricted models to

the unrestricted models and LR2 is a likelihood ratio test comparing the restricted two-factor
model with the restricted one-factor model (a bill factor for the bills and a bond factor for the
bonds). ** and # indicate significance at the 5 percent and 1 percent level respectively.
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yields a test of the joint hypothesis of symmetry and no excess kurtosis.® One
problem with this test is that the kurtosis measure converges very slowly to stan-
dard normal. Doornik and Hansen (1994) suggest an alternative test statistic
with better size properties in small samples, where the above measures are trans-
formed to be closer to standard normal. This is the measure denoted DH in Table
5.1. The assumption of normality is rejected at the 5 percent level of significance
for all maturities except the 2- and 3-year bonds.

LR1 is a likelihood ratio test comparing the restricted models to the unre-
stricted models. The nature of the restriction is that the parameters appearing
in the conditional variance equation are the same as the parameters in the mean
equation squared. The statistic is distributed as Chi squared with 2 degrees of
freedom. The restriction is not rejected for any maturity (except the 9-month
bill) at the 5 percent level of significance. This is strong evidence in favor the
restrictions imposed by the theory.”

We have used the bill and bond portiolios as factor representing portfolios.
This implies that we should have of 8y = 1 and affp = 1. Using the estimates

in the table we get o] f5’5= 0.87 and af 315: 1.01.

We may want to consider the possibility that the security returns would be
better modeled with a 1-Factor ARCH specification. LR2 is a likelihood ratio test
comparing the restricted two-factor model with the restricted one-factor model
(a bill factor for the bills and a bond factor for the bonds respectively). The test
statistic is distributed as Chi square with one degree of freedom. The restriction
to one factor is rejected at the 5 percent level for all maturities of less than 5
years (except for the 3 month bill). For maturities of 5 years and longer a bond

factor seems to be sufficient. We also have o ﬁ 5= 0.98.

The QML estimates of a one-factor model for the bonds are given in Table 5.2,
The bond betas are marginally lower than in the two-factor model. The robust
t-statistics are also somewhat lower. LRI is a likelthood ratio test comparing the
restricted one-factor model to the unrestricted one-factor model. The restrictions
are not rejected for any maturity for any reasonable significance level. Hence,
again the restrictions imposed by the theoretical model are supported by the
data. LR2 is the same as in Table 5.1. The restriction to one factor is only
rejected for the shorter bonds (2-4 years). The overall impression is that the bill
portfolio does not contribute much to the pricing of bonds with a maturity of 5
years and more.

The results pertaining to the bill portfolio betas for the bills are very similar
to t’ e results on U.S. data in Engle and Ng (1993). They price bills using a

6This test is sometimes referred to as the Bera-Jarque test.

"The estimates of the unrestricted two-factor mode! for the 2- and 4-month bills were ob-
tained after considerable difficulties in getting the optimization algorithm to converge. For
all other estimates reported in this paper convergence was rapid and not very sensitive to the
choice of initial values.
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Table 5.2: Restricted 1-Factor ARCH Model for T-bonds

Bpi t r-t |LR1j| LR2
2 years | 0.54 | (3.51) | [2.03] | 0.04 | 11.87%
3 years | 0.75 | (3.45) | [2.93] | 0.01 | 4.86%*
4 years | 0.88 | (3.10) | [1.95] | 0.03 | 7.04*
5 years | 1.11 | (3.14) | [2.81] | 0.01 | 2.83
6 years | 1.16 | (3.28) | [3.69] | 0.00 | 0.51
7T years | 1.24 | (3.04) | [2.94] | 0.00 | 1.80
8 years | 1.18 | (2.79) | [3.30] | 0.02 | 0.12
9 years | 0.98 | (2.40) | [3.07) | 0.33 | 0.60

NOTES.- t-values in parentheses and robust t-values in square brackets. LRl is a
likelihood ratio test comparing the restricted model with the unrestricted model
and LR2 is the same as in the previous table. ## and * indicate significance at the
5 percent and 1 percent level respectively.

one-factor model with a bill portfolio. Their beta estimates range from a low of
0.17 for the 2-month bill and then rise monotonically to a high of 1.77 for the
11-month bill. The beta for the 12-month bill is 1.57. They advance the change in
the definition of the 12-month bill by CRSP as an explanation for the 12-month
beta being lower than the 11-month beta. The findings in this paper suggest an
alternative explanation. Note that in Table 5.1 the bill beta is highest for the
10-month bill and then seem to decrease with maturity and becomes unimportant
for the longer bonds (according to the LR2 statistic). This is because there is a
second factor that gains in importance with maturity, viz. the bond factor.

The bond beta is highest for the 7-year bond (1.26) and then falls with ma-
turity (to 1.19 for the 8-year bond and 0.99 for the 9-year bond). In analogy
with our discussion earlier, this could indicate that there should be a third factor
which is important for long maturities and which is missing from the model. That
is, unless one is willing to believe that the 8- and 9-year bonds are less risky than
the 7-year bond.

In summary, a 2-Factor ARCH with a bill factor and a bond factor seem to
give a good description of the one-month excess holding returns of the T-bills
and the short T-bonds, while a 1-Factor ARCH with a bond factor seem to be
sufficient in pricing the long T-bonds.

0
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6. Yield Premia and Forward Premia
The yield on an n-period bond can be divided into two parts,?
o= 5+ 7, 1)

where the first part is the expectation of average future one-period spot rates and
the second part is the premium component,

i=1

n 1 &
pg ): Et {;ZTEJJ_I] y (62)

Q:(n) = F;

1<~ (it
n Z Hitia } . (6.3)
J=1
Engle and Ng (1993) refer to ¢{™ as the yield premium. According to the ex-
pectations theory of the term structure these premia should be equal to zero. In
the applied literature one has allowed for a premium that is constant over time.
Hence, according to the expectations theory the yield on a multiperiod bond
should be equal to the expectation of average future one-period spot rates, with
the possible exception of a constant term premium. The expectations theory is
a maintained assumption in the growing literature on using the term structure
as an indicator for monetary policy.® If there are time-varying term premia this
indicator will not work as well as in the absence of such premia.

Based on Eqgs. 5.1 and 2.8 we can write the return premium for an asset with
maturity n as

#™ = an + S4a0s: + 5505, (6.4)

where 6, = ¥n + Binch + BBnCB, Stn = BenTs, and 8. = BBaTB. Combining Egs.
6.3 and 6.4 we can express the yield premium on an n-period bond as

¢V = ;1;21 [@n—is1+ Son-ji1 Bt (Bs,445-1) + $Ba-ji1 Bt OB4151)].  (6.5)
i=
We can use the portfolio models in Eqs. 4.2 and 4.3 to obtain the multiperiod
forecasts of future volatility that are needed in Eq. 6.5. These forecasts and the
estimated coefficients plugged into Eq. 6.5 will enable us to compute the yield
premia for bonds with different maturities.

In Figure 3 the yield and yield premium for a 3-month T-bill is shown (ex-
pressed in annual percentage terms). For most of the period the yield premium
has been positive but small. But there are some periods when the premium has
been substantial. In February 1990 it was 1.2 %, in December 1991 it was 4.2%,

8See Engle and Ng (1993) for the derivation.
9See for example Svensson (1993).

14



and finally towards the end of the fixed exchange rate regime during the period
August to November 1992 it was 0.7%, 2.1%, 0.2%, and 0.5% in the respective
months. The premium continued to be relatively high for a few months after the
abandonment of the fixed exchange rate on November 19. Towards the second
half of 1994 the yield premium has also been relatively high. An increase in the
yield is often but not always accompanied by a higher risk premium. In early
1990 the increased yield depends to some extent on a higher yield premium, but
the increased yield towards the end of 1990 seems not to have anything to do
with risk as the yield premium is practically zero.?°

It is possible to identify the causes of the uncertainty in the three periods we
have identified above. At the end of 1989 the Swedish krona came under pressure.
An ensuing political crisis culminated in the resignation of the government in early
February 1990. This led to a great deal of uncertainty about the future direction
of economic policy. On November 15, 1991 Finland devalued its currency. The
Swedish krona also came under pressure. This led the Riksbank to raise the
marginal overnight rate from 10.5 to 11.5 percent on November 26 and then to
17.5 percent on December 5. This action seemed to convince the market that
Swedish exchange rate policy would stand firm. In the fall of 1992 the Swedish
krona again came under pressure and was eventually allowed to float on November
i9.

At this stage we can also easily compute the forward premia. We start by
defining the forward rate. The one-period forward rate at time ¢ for the period
from time n-1 to time n1s

_ 7 = ppf) (n— 1)rt("—1). (6.6)
Using Eq. 6.1 we get
£ = Be [rfPa] 4+ ng™ — (n—1)gf"™. (6.7)

The forward premium is defined as the difference between the forward rate
and the expected future spot rate,

L = i — B[] (6.8)
which, using Eq. 6.7, can be rewritten in terms of the yield premia,
L{ = ng{™ — (n — 1)g" ™. (6.9)

In Figure 4 the one-month interest rate, forward rate, and forward premium
for the period from two to three months into the future are shown. Not surpris-
ingly, the pattern is similar to the one for the yield premium in Figure 3. The
premium is of importance only in a few periods of very high volatility.

107p the 1990 Annual Report of Sveriges Riksbank it is stated that ” As the year drew to
a close there were market expectations of currency outflows, partly in conjunction with the
tightening of capital adequacy requirements for banks”. Not a great deal of uncertainty seems
to have been connected to these expectations according to Figure 3.
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7. Conclusion

A Factor ARCH model was considered as a way of modeling the risk premia in
interest-bearing securities. In this model the monthly holding returns are related
to the volatility in two factors. These factors are represented by a portfolio of
equally-weighted T-bills and a portfolio of equally-weighted T-bonds. The risk
premia are linearly related to the conditional variances of these portfolios.

The model was fitted to the Swedish term structure for the period June 1987
to December 1994. A 2-Factor ARCH with a bill factor and a bond factor seem to
fit the data for the one-month excess holding returns of the T-bills and the short
T-bonds quite well, while a 1-Factor ARCH with a bond factor is sufficient for the
long bonds. There is some reason to believe that the inclusion of a third factor
(replacing the bill factor) would provide a better model for the longest maturities.
The one-month holding premia are (generally) shown to be increasing in maturity.

A risk premium for the yield to maturity was derived from the one-month
holding premia. The yield premium for the 3-month T-bill has been close to zero
for most of the period. But there are shorter periods within this period when
the yield premium has been quite substantial. A forward premium for the period
from two to three months into the future was also derived. This premium showed
a time path very similar to that of the yield premium.

It is quite clear that there have been instances when the yield has increased
because of increased risk in the market rather than because of a change in ex-
pectations about future one-period interest rates. This evidence of time-varying
premia contradicts a strict interpretation of the expectations theory of the term
structure,
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Figure 1. Yields on selected bills and bonds
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Figure 2. One month excess holding period returns
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Figure 3. Yield and yield premium on 3-month T-bill
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Figure 4. The one month forward rate and forward premium with a two month horizon
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